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A diversity of structurally novel secondary metabolites is
found in sponges.2 Among the most remarkable is palau'amine
(1), which was isolated by Kinnel, Gehrken, and Scheuer from
a sponge (Stylotella agminata) collected in the Western Caroline
Islands.3 The unprecedented hexacyclic bisguanidine structure
of palau’amine was proposed following extensive mass spectral
and NMR investigations.4 Two years later, the isomeric alkaloid
styloguanidine (2), two brominated analogs, and palau’amine
were reported from a sponge (Stylotella aurantinium) collected
in the Yap sea.5 Palau’amine is reasonably nontoxic, exhibits

cytotoxic, antibiotic, antifungal activities and shows particularly
striking immunomodulatory activity;3 styloguanidine is a power-
ful chitinase inhibitor.5 Palau'amine is stable in acid; however,
it decomposes rapidly above pH 6.5.3 This instability, and the
complex hexacyclic constitution of palau'amine and styloguani-
dine, renders these marine alkaloids daunting total synthesis
targets.6 Much of their structural complexity resides in the
central 3-azabicyclo[3.3.0]octane ring system, particularly the
cyclopentane ring which is substituted on theR face at each
carbon. This density of functionality and the stereochemical
relationship of the two spirocyclic guanidine subunits present
a formidable challenge to synthesis. In this paper, we report a
concise strategy for assembling the centralcis-3-azabicyclo-
[3.3.0]octane core of palau’amine and styloguanidine in which
the critical stereochemical relationship between the ring fusion
stereocenters C-11 and C-12 and the two spiro guanidine units
(C-10 and C-16) is established by an intramolecular azomethine
imine cycloaddition.7,8

Disconnection of the linkage between C-6 and the 2-acylpyr-
role unit of palau'amine (1) and styloguanidine (2) and adjust-

ment of the oxidation state of carbons 6 and 20 afford3, a
pentacyclic intermediate that could serve as a common precursor
of 1 and2 (Scheme 1). A formidable challenge in constructing
3 is relating the orientation of the two spiro guanidine units
and thecis-3-azabicyclo[3.3.0]octane unit. Our approach to
palau'amine and styloguanidine is driven by the perception that
this stereorelationship could be established through intramo-
lecular cycloaddition of azomethine imine5 to form triaza-
hexahydrotriquinacene4.9 In order to facilitate initial investi-
gations of this pivotal intramolecular cycloaddition step, we
chose to investigate the sequence depicted in Scheme 1 in a
model series that lacks functionality (X and/or Y) which would
eventually be required for introduction of the aminomethyl and
chloride substituents.
In our initial survey,R-keto ester cycloaddition substrate10

was assembled by the sequence summarized in Scheme 2.
Conjugate addition of the sodium salt of glycine to ethyl (2-
allyl)acrylate (6),10 followed by Fisher esterification and protec-
tion of nitrogen with a benzyloxycarbonyl group, delivered7.
Dieckmann cyclization11 of 7 and subsequent reduction12 of the
â-keto ester product provided pyrrolidine8 in good yield.
Reaction of8with methanesulfonyl chloride, followed by direct
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Scheme 1

Scheme 2a

a Key: (a) H2NCH2CO2Na, EtOH, reflux; (b) H2SO4, EtOH, reflux;
(c) CbzCl, Et3N; (d) tBuOK, THF,-78°C; (e) NaBH4, EtOH; (f) MsCl,
Et3N, DMAP, C6H6, 0 °C; (g) O3, CH2Cl2; Ph3P; (h) LiCl, DBU, MeCN,
(MeO)2POCH(OTBDMS)CO2Me; (i) CsF, AcOH, MeCN.
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ozonolysis of the somewhat unstable crude mesylate derivative,
yielded the corresponding aldehyde, which was directly con-
densed with methyl 2-(tert-butyldimethylsiloxy)-2-(dimeth-
ylphosphono)acetate13 in the presence of excess 1,8-diazobicyclo-
[5.4.0]undec-7-ene (DBU) and LiCl.14 This three-step sequence
provided dihydropyrrole9 in 50% overall yield. Desilylation
of 9 with CsF provided racemicR-keto ester10 in high yield.
When an acetic acid solution of10and thiosemicarbazide (3

equiv) was heated at 70°C, intramolecular cycloaddition and
subsequent acylation took place smoothly to deliver tetracycle
11 in excellent yield (Scheme 3). In this pivotal step, the single
stereogenic center of10directs formation of the three additional
stereocenters in11. Treatment of11at room temperature with
HBr in AcOH provided the crystalline hydrobromide salt12,
whose structure was confirmed by single-crystal X-ray diffrac-
tion analysis.15 Cleavage of the N-N bond of11 proceeded
smoothly in the presence of 2 equiv of SmI2 in THF-MeOH
(9:1) to yield tricyclicR-amino ester13, whose constitution was
also established by single-crystal X-ray diffraction analysis.15,16

Initial attempts to fashion a second spiro thiohydantoin from
the R-amino ester functionality of11 by reaction with an
isothiocyanate followed by base-promoted cyclization proved
unproductive.17 However, hydrolysis of ester11and subsequent
treatment of carboxylic acid14 with 2.5 equiv of phosphoryl
isothiocyanate18 in refluxing THF provided bis(thiohydantoin)
15 in 72% overall yield from11 (Scheme 4). Not only had

reaction of14 with phosphoryl isothiocyanate fashioned the
second thiohydantoin ring but it also accomplished reductive
cleavage of the N-N bond.19,20 Finally, the two spiro thiohy-
dantoins were efficiently converted into the desired bis-
(acylguanidine) units of17 by sequential reaction of15 with
MeI and benzylamine.21

In conclusion, a concise approach to the total synthesis of
the complex hexacyclic bisguanidine alkaloids palau'amine (1)
and styloguanidine (2) has been defined in a model series. The
central step is an intramolecular azomethine imine cycloaddition,
10f 11, which fashions thecis-3-azabicyclo[3.3.0]octane and
two pendant spiro guanidine units with complete stereocontrol.
Current efforts focus on elaborating this strategy to realize a
comprehensive solution to the total synthesis challenge posed
by 1 and2.
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